Subject : Mathematics

Time: 3 Hours 15 Minutes

Full Marks : 100

- Special Credit will be given for answers which are brief and to the point
- Marks will be deducted for spelling mistakes, untidiness and bad handwriting
- Figures in the margin indicate full marks for the questions

Group - A

1. Answer the following questions (Alternatives are to be noted) : 1 X 10 = 10

- (a) If f(x) is a polynomial of degree $n(\geq 1)$, then the degree of f'(x) is (n+1)
- (b) The sum of the coefficients in the expansion of (1+X)¹² is
 (i) 4096 (ii) 2048 (iii) 1024 (iv) 512
- (c) The eccentricity of the parabola $x^2+y-x+5=0$ is
 - (i) >1 (ii) <1 (iii) 0 (iv) 1
- Or If y = (x-1)log(2x+1), then the value of dy/dx at the point x=1 is ------
 - (d) The point which is exterior to the ellipse 16x²+9y²-16x-32=0 is (i) (1/3,1) (ii) (3,-2) (iii) (1/4,1) (iv) (½,2)
 - (e) Fill in the blank :
 - If $y = 1 + \cos 2x$, then $(d^2y/dx^2) + 4y =$
- Or $\int \frac{x+1}{\sqrt{x+1}} \, dx$ is ------
 - (f) Define collectively exhaustive events in relation to probability theory
 - (g) Give the classical definition of probability
 - (h) If any point on a hyperbola is (4 sec ϕ , 5 tan ϕ), then the eccentricity of the Hyperbola is

(i) 25/16 (ii) $\sqrt{41/4}$ (iii) $\sqrt{41/5}$ (iv) $\sqrt{41/8}$

- (i) If f(x) = IxI, then f(x) is
- (i) differentiable at x=0 (ii) not differentiable at x=0
- (iii) Lf'(0) = Rf'(0) (iv) none of these
- Or Two cards are drawn from a well shuffled pack of 52 cards. The probability of getting ace or black card is
 - (i) 17/52 (ii) 55/221 (iii) 4/13 (iv) none of these
 - (j) If X=1/3+1.3/3.6+1.3.5/3.6.9+... Then the value of x^2+2x is :
 - (i) $(1/3)^{1}/3$ (ii) $\sqrt{3}/2$ (iii) $\sqrt{1}/3$ (iv) $(3/2)^{1}/3$

Group – B

2. Answer the following questions as per instruction :

(a) Answer any two questions :

 $2 \times 2 = 4$

- (i) Find the probability of obtaining six atleast once in four throws of an Unbiased die.
- (ii) Using the series for e show that 2<e<3
- (iii) If the length of the minor axis of an ellipse is twice the length of its latus Rectum, then what is the eccentricity of the ellipse?

(b) Answer any one question :

- 2 X 1 = 2
- (i) If the coordinates of the two foci of an ellipse are (0,4) & (0,-4) and the Equations of the directrices are y=9 & y=-9, then find the equation of the Ellipse and the length of its latus rectum.
- (ii) Find the coordinates of two points on the parabola $x^2=8y$ such that the distance of each point from the focus is 4 units. Find the equation of the circle described on the line segment joining these points as a diameter

)

	(C)	Answer any one question :	$2 \ge 1 = 2$	
		(i) Find dy/dx when $xy+1=cos(xy)$		
		(ii) If $dx/dy=u$ and $d^2x/dy^2=v$, show that $d^2y/dx^2=-v/u^3$		
	(d)	Evaluate any one of the following integrals :	2 x 1 = 2	
		(i) $\int \cos x/\sqrt{1} + \sin x dx$ (ii) $\int \sqrt{\tan x} / \sin x \cos x dx$		
	(e)	Answer any one question :	2 X 1 = 2	
		(i) Find the equation of the ellipse whose major axis and minor a	axis are along	
		x-axis and y-axis respectively, eccentricity is $1/\sqrt{2}$ and sum of	f the squares	
		of lengths of the major and minor axes is 24.		
		(ii)If the derivatives of two functions are equal, then prove that	t the	
		difference of the two functions is constant.		
	(f)	Answer any one question :	2 X 1 = 2	
		(i) If $P(A) = a$, $P(B)=b$, then show that $P(A/B)>a+b-1/b$		
		(ii) Find the sum of : 1+1/3!+1/5!+1/7!+		
	(g)	Answer any one question :	$2 \times 1 = 2$	
		(i) If $x=1/z$, $y=f(x)$ and $d^2y/dx^2 = kz^3dy/dz + z^4 d^2y/dz^2$, then value of k is		
		(ii) If $Jf(x) dx = f(x)$, then $J{f(x)}^2 dx$ is equal to		
	(h)	Answer any three question :	$2 \times 3 = 6$	
		(1) Evaluate : $Jdx/\sqrt{3-2x-x^2}$		
		(ii) The probability that a teacher will give a surprise test during any class		
		Meeting is 1/5. If a student is absent on two days, what is the	probability	
		I hat he will miss atleast one test. (iii) Whet is the new differentiation for the several state of $L = 2(1, 2\pi)/(1, 2\pi)/(1, 2\pi)$		
		(III) what is the condition for the expansion of $Log (1+2X/1-2X)$? write down the expansion and from it, choosing a quitable value for x, find the		
		average for log 2	iu the	
		expansion 101 102 5	that	
		(17) If 3 & 3 are the four and F any point on this hyperbola, Frove $CD^2 - SD SD'$	llat	
		(v) If $v = \sin x \log (\tan (x/2))$ show that $(d^2 v/dx^2) + v = \cot x$		
		(v) if $y = sinxlog(tan(x/2))$, show that (if $y/ax = y'y''$) (v)		
3.	Ans	wer the following questions as per instructions :		
0.	(a)	Answer any two questions :	4 X 2 = 8	
	(i)	If each of the coefficient of the quadratic equation $ax^2+bx+c=0$ is s	selected	
	(-)	Randomly from the integers 1.2 and 3. Find the probability that the		
	1	Equation has equal roots.	-	
	(ii)I	(ii) If the letters of the word RAMESH be arranged at random, what is the probability		
	Ť	That there are exactly three letters between A and E.		
	(iii)Among the examinees in an examination, 25%, 30% and 45% failed in statistics.			
		In mathematics and in atleast one of statistics and mathematics respectively. An		
	J	Examinee is selected at random. Find the probabilities that (a) he failed in		
	9	Statistics only (ii) he passed in statistics if it is known that he failed	d in	
	1	mathematics.		
	()	b) Answer any two questions : 4	X 2 = 8	
		(i) The coordinates of foci of a hyperbola are (0,±4) and the lengt	h of its	
		Latusrectum is 12 units; find its equation.		

(ii)The coordinates of the vertices of a hyperbola are (9,2) and (1,2) and the Distance between the foci is 10 units. Find its equation and also the length Of latusrectum (iii)Prove that least focal chord of a parabola is the latus rectum.

© Evaluate any two of the following integrals : 4 X 2 = 8

- (i) $\int 1/(x-a)^2(x-b)^3 dx$ (ii) $\int x^2/x^4 + x^2 + 1 dx$ (iii) $\int x/(1-\cos x)^2 dx$ (d) Answer the following questions : $4 \times 2 = 3$
- d) Answer the following questions : 4 x 2 = 8
 (i) If A and B are any two events connected to a random experiment E, then Prove that P(A∩B)=P(A).P(B/A)

(ii) If x is not equal to one, find the sum of $1+(1+x)/2!+(1+x+x^2)/3!+\cdots \infty$

(e) Answer any four questions :

- (i) Evaluate : $\int dx/(asinx + bcosx)$
- (ii) If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ Show that $dy/dx = \sqrt{1-y^2}/\sqrt{1-x^2}$
- (iii)The two lines ty=x+t² and y+tx=2t+t³ intersect at the point P. Show that P Lies on the curve whose equation is y²=4x
- (iv)Find the greatest term in the expansion of $(2+3x)^5$ when $x = \frac{1}{2}$
- (v)A bag contains 10 balls out of which 5 are white, 2 are red and 3 are green.2 balls are drawn at random. Find the probability that two drawn balls are Not white.
- (vi)Identify the nature of the conic $4x^2+8x=5y+6$ and find out the length of its Latus rectum and equation of its directrix.

4. Answer the following questions as per instructions : 6 X 4 = 24 {Answer any one question from (a) and (b)} {Answer any one from © and (d)} {Answer any two from (e), (f), (g), (h)}

a. (i) If the coefficient of (r+3)th term in the expansion of (1+x)⁴⁷ be the same as the coefficient of (3r+2)th term, find these two terms.
(ii) The coefficients of 5th, 6th & 7th terms in the expansion of (1+x)ⁿ are in AP find n.
3 + 3 = 6

- b. (i) For any two events A and B prove that $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$
 - (ii) find the sum to infinity of the series $\frac{1}{2}(1/2)^2 + \frac{2}{3}(1/2)^3 + \dots$
 - 3 + 3 = 6

 $4 \times 4 = 16$

- **C** (i) Find if possible the derivative of Sec⁻¹(1/8x²-1) with respect to $\sqrt{1-x^2}$ at x=1/2
 - (ii) If $y=x^{n-1}\log x$, Prove that $x^2(d^2y/dx^2) + (3-2n)xdy/dx + (n-1)^2y=0$ 3 + 3 = 6

(d) (i) If $f(x) = (1+x/2+x)^{3+2^{x}} + \cos x$, find f'(0) (ii) If $ax^{2}+2hxy+by^{2}=0$, prove that $(d^{2}y/dx^{2}) = (h^{2}-ab)/(hx+by)^{3}$ 3+3=6

- (e) (i) $\int dx/(1+x)\sqrt{1+x-x^2}$ (ii) $\int \log(x+1)/\sqrt{(x+1)} dx$ 3 + 3 = 6
- (f) (i) $\int (\log x 1) / \{1 + (\log x)^2\}^2$ (ii) $\int dx / \sin(x a) \sin(x b)$ 3 + 3 = 6 (g) (i) Integrate 1/tanx + cotx + secx + cosecx (ii) $\int (3x+2) \sqrt{(x^2+x+1)} dx$ 3 + 3 = 6

(h) (i) Find from first principle the derivative of log(cosx)

(ii) If
$$f(x)$$
 has a finite derivate $f'(a)$, at x=a show that $\begin{cases} Yf(a) = af(x) \end{cases}$

Lt ------= {
$$f(a) - af'(a)$$
 } $3 + 3 = 6$
X $\rightarrow a$ { $x - a$ }